Skip to content

plots

plots

plot_murphy_diagram(y_obs, y_pred, weights=None, *, etas=100, functional='mean', level=0.5, ax=None)

Plot a Murphy diagram.

A Murphy diagram plots the scores of elementary scoring functions ElementaryScore over a range of their free parameter eta. This shows, if a model dominates all others over a wide class of scoring functions or if the ranking is very much dependent on the choice of scoring function. See Notes for further details.

Parameters:

Name Type Description Default
y_obs array-like of shape (n_obs)

Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1].

required
y_pred array-like of shape (n_obs) or (n_obs, n_models)

Predicted values, e.g. for the conditional expectation of the response, E(Y|X).

required
weights array-like of shape (n_obs) or None

Case weights.

None
etas int or array - like

If an integer is given, equidistant points between min and max y values are generater. If an array-like is given, those points are used.

100
functional str

The functional that is induced by the identification function V. Options are:

  • "mean". Argument level is neglected.
  • "median". Argument level is neglected.
  • "expectile"
  • "quantile"
'mean'
level float

The level of the expectile of quantile. (Often called \(\alpha\).) It must be 0 < level < 1. level=0.5 and functional="expectile" gives the mean. level=0.5 and functional="quantile" gives the median.

0.5
ax Axes

Axes object to draw the plot onto, otherwise uses the current Axes.

None

Returns:

Name Type Description
ax

Either the matplotlib axes or the plotly figure. This is configurable by setting the plot_backend via model_diagnostics.set_config or model_diagnostics.config_context.

Notes

For details, refer to For details, refer to [Ehm2015].

References
[Ehm2015]

W. Ehm, T. Gneiting, A. Jordan, F. Krüger. "Of Quantiles and Expectiles: Consistent Scoring Functions, Choquet Representations, and Forecast Rankings". arxiv:1503.08195.

Source code in src/model_diagnostics/scoring/plots.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def plot_murphy_diagram(
    y_obs: npt.ArrayLike,
    y_pred: npt.ArrayLike,
    weights: Optional[npt.ArrayLike] = None,
    *,
    etas: Union[int, npt.ArrayLike] = 100,
    functional: str = "mean",
    level: float = 0.5,
    ax: Optional[mpl.axes.Axes] = None,
):
    r"""Plot a Murphy diagram.

    A Murphy diagram plots the scores of elementary scoring functions `ElementaryScore`
    over a range of their free parameter `eta`. This shows, if a model dominates all
    others over a wide class of scoring functions or if the ranking is very much
    dependent on the choice of scoring function.
    See [Notes](#notes) for further details.

    Parameters
    ----------
    y_obs : array-like of shape (n_obs)
        Observed values of the response variable.
        For binary classification, y_obs is expected to be in the interval [0, 1].
    y_pred : array-like of shape (n_obs) or (n_obs, n_models)
        Predicted values, e.g. for the conditional expectation of the response,
        `E(Y|X)`.
    weights : array-like of shape (n_obs) or None
        Case weights.
    etas : int or array-like
        If an integer is given, equidistant points between min and max y values are
        generater. If an array-like is given, those points are used.
    functional : str
        The functional that is induced by the identification function `V`. Options are:

        - `"mean"`. Argument `level` is neglected.
        - `"median"`. Argument `level` is neglected.
        - `"expectile"`
        - `"quantile"`
    level : float
        The level of the expectile of quantile. (Often called \(\alpha\).)
        It must be `0 < level < 1`.
        `level=0.5` and `functional="expectile"` gives the mean.
        `level=0.5` and `functional="quantile"` gives the median.
    ax : matplotlib.axes.Axes
        Axes object to draw the plot onto, otherwise uses the current Axes.

    Returns
    -------
    ax :
        Either the matplotlib axes or the plotly figure. This is configurable by
        setting the `plot_backend` via
        [`model_diagnostics.set_config`][model_diagnostics.set_config] or
        [`model_diagnostics.config_context`][model_diagnostics.config_context].

    Notes
    -----
    [](){#notes}
    For details, refer to `[Ehm2015]`.

    References
    ----------
    `[Ehm2015]`

    :   W. Ehm, T. Gneiting, A. Jordan, F. Krüger.
        "Of Quantiles and Expectiles: Consistent Scoring Functions, Choquet
        Representations, and Forecast Rankings".
        [arxiv:1503.08195](https://arxiv.org/abs/1503.08195).
    """
    if ax is None:
        plot_backend = get_config()["plot_backend"]
        if plot_backend == "matplotlib":
            ax = plt.gca()
        else:
            import plotly.graph_objects as go

            fig = ax = go.Figure()
    elif isinstance(ax, mpl.axes.Axes):
        plot_backend = "matplotlib"
    elif is_plotly_figure(ax):
        import plotly.graph_objects as go

        plot_backend = "plotly"
        fig = ax
    else:
        msg = (
            "The ax argument must be None, a matplotlib Axes or a plotly Figure, "
            f"got {type(ax)}."
        )
        raise ValueError(msg)

    if (n_cols := length_of_second_dimension(y_obs)) > 0:
        if n_cols == 1:
            y_obs = get_second_dimension(y_obs, 0)
        else:
            msg = (
                f"Array-like y_obs has more than 2 dimensions, y_obs.shape[1]={n_cols}"
            )
            raise ValueError(msg)

    y_pred_min, y_pred_max = get_array_min_max(y_pred)
    y_obs_min, y_obs_max = get_array_min_max(y_obs)
    y_min, y_max = min(y_pred_min, y_obs_min), max(y_pred_max, y_obs_max)

    if y_min == y_max:
        msg = "All values y_obs and y_pred are one single and same value."
        raise ValueError(msg)
    elif isinstance(etas, numbers.Integral):
        etas = np.linspace(y_min, y_max, num=etas, endpoint=True)
    else:
        etas = np.asarray(etas).astype(float)
        if etas.ndim > 1:
            etas = etas.reshape(max(etas.shape))

    def elementary_score(y_obs, y_pred, weights, eta):
        sf = ElementaryScore(eta, functional=functional, level=level)
        return sf(y_obs=y_obs, y_pred=y_pred, weights=weights)

    n_pred = length_of_second_dimension(y_pred)
    pred_names, _ = get_sorted_array_names(y_pred)

    for i in range(len(pred_names)):
        y_pred_i = y_pred if n_pred == 0 else get_second_dimension(y_pred, i)

        y_plot = [
            elementary_score(y_obs=y_obs, y_pred=y_pred_i, weights=weights, eta=eta)
            for eta in etas
        ]
        label = pred_names[i] if n_pred >= 2 else None
        if plot_backend == "matplotlib":
            ax.plot(etas, y_plot, label=label)
        else:
            fig.add_scatter(
                x=etas,
                y=y_plot,
                mode="lines",
                line={"color": get_plotly_color(i)},
                name=label,
            )

    xlabel = "eta"
    ylabel = "score"
    title = "Murphy Diagram"
    if n_pred <= 1 and len(pred_names[0]) > 0:
        title = title + " " + pred_names[0]

    if plot_backend == "matplotlib":
        if n_pred >= 2:
            ax.legend()
        ax.set_title(title)
        ax.set(xlabel=xlabel, ylabel=ylabel)
    else:
        if n_pred <= 1:
            fig.update_layout(showlegend=False)
        fig.update_layout(xaxis_title=xlabel, yaxis_title=ylabel, title=title)

    return ax