Skip to content

plots

plots

add_marginal_subplot(subfig, fig, row, col)

Add a plotly subplot from plot_marginal to a multi-plot figure.

This auxiliary function is accompanies plot_marginal in order to ease plotting with subfigures with the plotly backend.

For it to work, you must call plotly's make_subplots with the specs argument and set the appropriate number of {"secondary_y": True} in a list of lists.

from plotly.subplots import make_subplots

n_rows, n_cols = ...
fig = make_subplots(
    rows=n_rows,
    cols=n_cols,
    specs=[[{"secondary_y": True}] * n_cols] * n_rows,  # This is important!
)
The reason is that plot_marginal uses a secondary yaxis (and swapped sides with the primary yaxis).

Parameters:

Name Type Description Default
subfig plotly Figure

The subfigure which is added to fig.

required
fig plotly Figure

The multi-plot figure to which subfig is added at positions row and col.

required
row int

The (0-based) row index of fig at which subfig is added.

required
col int

The (0-based) column index of fig at which subfig is added.

required

Returns:

Type Description
fig

The plotly figure fig.

Source code in src/model_diagnostics/calibration/plots.py
def add_marginal_subplot(subfig, fig, row: int, col: int):
    """Add a plotly subplot from plot_marginal to a multi-plot figure.

    This auxiliary function is accompanies
    [`plot_marginal`][model_diagnostics.calibration.plot_marginal] in order to ease
    plotting with subfigures with the plotly backend.

    For it to work, you must call plotly's `make_subplots` with the `specs` argument
    and set the appropriate number of `{"secondary_y": True}` in a list of lists.
    ```py hl_lines="7"
    from plotly.subplots import make_subplots

    n_rows, n_cols = ...
    fig = make_subplots(
        rows=n_rows,
        cols=n_cols,
        specs=[[{"secondary_y": True}] * n_cols] * n_rows,  # This is important!
    )
    ```
    The reason is that `plot_marginal` uses a secondary yaxis (and swapped sides with
    the primary yaxis).

    Parameters
    ----------
    subfig : plotly Figure
        The subfigure which is added to `fig`.
    fig : plotly Figure
        The multi-plot figure to which `subfig` is added at positions `row` and `col`.
    row : int
        The (0-based) row index of `fig` at which `subfig` is added.
    col : int
        The (0-based) column index of `fig` at which `subfig` is added.

    Returns
    -------
    fig
        The plotly figure `fig`.
    """
    # It returns a tuple of `range`s starting at 1.
    plotly_rows, plotly_cols = fig._get_subplot_rows_columns()  # noqa: SLF001
    n_rows = len(plotly_rows)
    n_cols = len(plotly_cols)
    if row >= n_rows or col >= n_cols:
        msg = (
            f"The `fig` only has {n_rows} rows and {n_cols} columns. You specified "
            f"(0-based) {row=} and {col=}."
        )
        raise ValueError(msg)
    i = n_cols * row + col
    # Plotly uses 1-based indices:
    row += 1
    col += 1
    # Transfer the x-axis titles of the subfig to fig.
    xaxis = "xaxis" if i == 0 else f"xaxis{i + 1}"
    fig["layout"][xaxis]["title"] = subfig["layout"]["xaxis"]["title"]
    # Change sides of y-axis.
    yaxis = "yaxis" if i == 0 else f"yaxis{2 * i + 1}"
    yaxis2 = f"yaxis{2 * (i + 1)}"
    fig.update_layout(
        **{
            yaxis: {"side": "right", "showgrid": False},
            yaxis2: {"side": "left", "title": "y"},
        }
    )
    # Only the last added subfig should show the legends, but all the ones before
    # should not.
    # So don't show legends for row-1 and col-1.
    if row > 1:
        fig.update_traces(patch={"showlegend": False}, row=row - 1, col=col)
    if col > 1:
        fig.update_traces(patch={"showlegend": False}, row=row, col=col - 1)
    for d in subfig.data:
        fig.add_trace(d, row=row, col=col, secondary_y=d["yaxis"] == "y2")

    fig.update_layout(title=subfig.layout.title.text)

plot_bias(y_obs, y_pred, feature=None, weights=None, *, functional='mean', level=0.5, n_bins=10, bin_method='quantile', confidence_level=0.9, ax=None)

Plot model bias conditional on a feature.

This plots the generalised bias (residuals), i.e. the values of the canonical identification function, versus a feature. This is a good way to assess whether a model is conditionally calibrated or not. Well calibrated models have bias terms around zero. See Notes for further details.

For numerical features, NaN are treated as Null values. Null values are always plotted as rightmost value on the x-axis and marked with a diamond instead of a dot.

Parameters:

Name Type Description Default
y_obs array-like of shape (n_obs)

Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1].

required
y_pred array-like of shape (n_obs) or (n_obs, n_models)

Predicted values, e.g. for the conditional expectation of the response, E(Y|X).

required
feature array-like of shape (n_obs) or None

Some feature column.

None
weights array-like of shape (n_obs) or None

Case weights. If given, the bias is calculated as weighted average of the identification function with these weights. Note that the standard errors and p-values in the output are based on the assumption that the variance of the bias is inverse proportional to the weights. See the Notes section for details.

None
functional str

The functional that is induced by the identification function V. Options are:

  • "mean". Argument level is neglected.
  • "median". Argument level is neglected.
  • "expectile"
  • "quantile"
'mean'
level float

The level of the expectile or quantile. (Often called \(\alpha\).) It must be 0 <= level <= 1. level=0.5 and functional="expectile" gives the mean. level=0.5 and functional="quantile" gives the median.

0.5
n_bins int

The number of bins for numerical features and the maximal number of (most frequent) categories shown for categorical features. Due to ties, the effective number of bins might be smaller than n_bins. Null values are always included in the output, accounting for one bin. NaN values are treated as null values.

10
bin_method str

The method to use for finding bin edges (boundaries). Options are:

  • "quantile"
  • "uniform"
'quantile'
confidence_level float

Confidence level for error bars. If 0, no error bars are plotted. Value must fulfil 0 <= confidence_level < 1.

0.9
ax matplotlib.axes.Axes or plotly Figure

Axes object to draw the plot onto, otherwise uses the current Axes.

None

Returns:

Name Type Description
ax

Either the matplotlib axes or the plotly figure. This is configurable by setting the plot_backend via model_diagnostics.set_config or model_diagnostics.config_context.

Notes

A model A model \(m(X)\) is conditionally calibrated iff \(E(V(m(X), Y))=0\) a.s. The empirical version, given some data, reads \(\frac{1}{n}\sum_i V(m(x_i), y_i)\). See [FLM2022].

References
FLM2022

T. Fissler, C. Lorentzen, and M. Mayer. "Model Comparison and Calibration Assessment". (2022) arxiv:2202.12780.

Source code in src/model_diagnostics/calibration/plots.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
def plot_bias(
    y_obs: npt.ArrayLike,
    y_pred: npt.ArrayLike,
    feature: Optional[npt.ArrayLike] = None,
    weights: Optional[npt.ArrayLike] = None,
    *,
    functional: str = "mean",
    level: float = 0.5,
    n_bins: int = 10,
    bin_method: str = "quantile",
    confidence_level: float = 0.9,
    ax: Optional[mpl.axes.Axes] = None,
):
    r"""Plot model bias conditional on a feature.

    This plots the generalised bias (residuals), i.e. the values of the canonical
    identification function, versus a feature. This is a good way to assess whether
    a model is conditionally calibrated or not. Well calibrated models have bias terms
    around zero.
    See [Notes](#notes) for further details.

    For numerical features, NaN are treated as Null values. Null values are always
    plotted as rightmost value on the x-axis and marked with a diamond instead of a
    dot.

    Parameters
    ----------
    y_obs : array-like of shape (n_obs)
        Observed values of the response variable.
        For binary classification, y_obs is expected to be in the interval [0, 1].
    y_pred : array-like of shape (n_obs) or (n_obs, n_models)
        Predicted values, e.g. for the conditional expectation of the response,
        `E(Y|X)`.
    feature : array-like of shape (n_obs) or None
        Some feature column.
    weights : array-like of shape (n_obs) or None
        Case weights. If given, the bias is calculated as weighted average of the
        identification function with these weights.
        Note that the standard errors and p-values in the output are based on the
        assumption that the variance of the bias is inverse proportional to the
        weights. See the Notes section for details.
    functional : str
        The functional that is induced by the identification function `V`. Options are:

        - `"mean"`. Argument `level` is neglected.
        - `"median"`. Argument `level` is neglected.
        - `"expectile"`
        - `"quantile"`
    level : float
        The level of the expectile or quantile. (Often called \(\alpha\).)
        It must be `0 <= level <= 1`.
        `level=0.5` and `functional="expectile"` gives the mean.
        `level=0.5` and `functional="quantile"` gives the median.
    n_bins : int
        The number of bins for numerical features and the maximal number of (most
        frequent) categories shown for categorical features. Due to ties, the effective
        number of bins might be smaller than `n_bins`. Null values are always included
        in the output, accounting for one bin. NaN values are treated as null values.
    bin_method : str
        The method to use for finding bin edges (boundaries). Options are:

        - "quantile"
        - "uniform"
    confidence_level : float
        Confidence level for error bars. If 0, no error bars are plotted. Value must
        fulfil `0 <= confidence_level < 1`.
    ax : matplotlib.axes.Axes or plotly Figure
        Axes object to draw the plot onto, otherwise uses the current Axes.

    Returns
    -------
    ax :
        Either the matplotlib axes or the plotly figure. This is configurable by
        setting the `plot_backend` via
        [`model_diagnostics.set_config`][model_diagnostics.set_config] or
        [`model_diagnostics.config_context`][model_diagnostics.config_context].

    Notes
    -----
    [](){#notes}
    A model \(m(X)\) is conditionally calibrated iff \(E(V(m(X), Y))=0\) a.s. The
    empirical version, given some data, reads \(\frac{1}{n}\sum_i V(m(x_i), y_i)\).
    See `[FLM2022]`.

    References
    ----------
    `FLM2022`

    :   T. Fissler, C. Lorentzen, and M. Mayer.
        "Model Comparison and Calibration Assessment". (2022)
        [arxiv:2202.12780](https://arxiv.org/abs/2202.12780).
    """
    if not (0 <= confidence_level < 1):
        msg = (
            f"Argument confidence_level must fulfil 0 <= level < 1, got "
            f"{confidence_level}."
        )
        raise ValueError(msg)
    with_errorbars = confidence_level > 0

    if ax is None:
        plot_backend = get_config()["plot_backend"]
        if plot_backend == "matplotlib":
            ax = plt.gca()
        else:
            import plotly.graph_objects as go

            fig = ax = go.Figure()
    elif isinstance(ax, mpl.axes.Axes):
        plot_backend = "matplotlib"
    elif is_plotly_figure(ax):
        import plotly.graph_objects as go

        plot_backend = "plotly"
        fig = ax
    else:
        msg = (
            "The ax argument must be None, a matplotlib Axes or a plotly Figure, "
            f"got {type(ax)}."
        )
        raise ValueError(msg)

    df = compute_bias(
        y_obs=y_obs,
        y_pred=y_pred,
        feature=feature,
        weights=weights,
        functional=functional,
        level=level,
        n_bins=n_bins,
        bin_method=bin_method,
    )

    if df["bias_stderr"].fill_nan(None).null_count() > 0 and with_errorbars:
        msg = (
            "Some values of 'bias_stderr' are null. Therefore no error bars are "
            "shown for that y_pred/model, despite the fact that confidence_level>0 "
            "was set to True."
        )
        warnings.warn(msg, UserWarning, stacklevel=2)

    if "model_" in df.columns:
        col_model = "model_"
    elif "model" in df.columns:
        col_model = "model"
    else:
        col_model = None

    if feature is None:
        # We treat the predictions from different models as a feature.
        feature_name = col_model
        feature_has_nulls = False
    else:
        feature_name = array_name(feature, default="feature")
        feature_has_nulls = df[feature_name].null_count() > 0

    is_categorical = False
    is_string = False
    feature_dtype = df.get_column(feature_name).dtype
    if feature_dtype in [pl.Categorical, pl.Enum]:
        is_categorical = True
    elif feature_dtype in [pl.Utf8, pl.Object]:
        is_string = True

    n_x = df[feature_name].n_unique()

    # horizontal line at y=0
    if plot_backend == "matplotlib":
        ax.axhline(y=0, xmin=0, xmax=1, color="k", linestyle="dotted")
    else:
        fig.add_hline(y=0, line={"color": "black", "dash": "dot"}, showlegend=False)

    # bias plot
    if feature is None or col_model is None:
        pred_names = [None]
    else:
        # pred_names = df[col_model].unique() this automatically sorts
        pred_names, _ = get_sorted_array_names(y_pred)
    n_models = len(pred_names)
    with_label = feature is not None and (n_models >= 2 or feature_has_nulls)

    if (is_string or is_categorical) and feature_has_nulls:
        # We want the Null values at the end and therefore sort again.
        df = df.sort(feature_name, descending=False, nulls_last=True)

    for i, m in enumerate(pred_names):
        filter_condition = True if m is None else pl.col(col_model) == m
        df_i = df.filter(filter_condition)
        label = m if with_label else None

        if df_i["bias_stderr"].null_count() > 0:
            with_errorbars_i = False
        else:
            with_errorbars_i = with_errorbars

        if with_errorbars_i:
            # We scale bias_stderr by the corresponding value of the t-distribution
            # to get our desired confidence level.
            n = df_i["bias_count"].to_numpy()
            conf_level_fct = special.stdtrit(
                np.maximum(n - 1, 1),  # degrees of freedom, if n=0 => bias_stderr=0.
                1 - (1 - confidence_level) / 2,
            )
            df_i = df_i.with_columns(
                [(pl.col("bias_stderr") * conf_level_fct).alias("bias_stderr")]
            )

        if is_string or is_categorical:
            df_ii = df_i.filter(pl.col(feature_name).is_not_null())
            # We x-shift a little for a better visual.
            span = (n_x - 1) / n_x / n_models  # length for one cat value and one model
            x = np.arange(n_x - feature_has_nulls)
            if n_models > 1:
                x = x + (i - n_models // 2) * span * 0.5
            if plot_backend == "matplotlib":
                ax.errorbar(
                    x,
                    df_ii["bias_mean"],
                    yerr=df_ii["bias_stderr"] if with_errorbars_i else None,
                    marker="o",
                    linestyle="None",
                    capsize=4,
                    label=label,
                )
            else:
                fig.add_scatter(
                    x=x,
                    y=df_ii["bias_mean"],
                    error_y={
                        "type": "data",  # value of error bar given in data coordinates
                        "array": df_ii["bias_stderr"] if with_errorbars_i else None,
                        "width": 4,
                        "visible": True,
                    },
                    marker={"color": get_plotly_color(i)},
                    mode="markers",
                    name=label,
                )
        else:
            if with_errorbars_i:
                lower = df_i["bias_mean"] - df_i["bias_stderr"]
                upper = df_i["bias_mean"] + df_i["bias_stderr"]
                if plot_backend == "matplotlib":
                    ax.fill_between(
                        df_i[feature_name],
                        lower,
                        upper,
                        alpha=0.1,
                    )
                else:
                    # plotly has no equivalent of fill_between and needs a bit more
                    # coding
                    color = get_plotly_color(i)
                    fig.add_scatter(
                        x=pl.concat([df_i[feature_name], df_i[::-1, feature_name]]),
                        y=pl.concat([lower, upper[::-1]]),
                        fill="toself",
                        fillcolor=color,
                        hoverinfo="skip",
                        line={"color": color},
                        mode="lines",
                        opacity=0.1,
                        showlegend=False,
                    )
            if plot_backend == "matplotlib":
                ax.plot(
                    df_i[feature_name],
                    df_i["bias_mean"],
                    linestyle="solid",
                    marker="o",
                    label=label,
                )
            else:
                fig.add_scatter(
                    x=df_i[feature_name],
                    y=df_i["bias_mean"],
                    marker_symbol="circle",
                    mode="lines+markers",
                    line={"color": get_plotly_color(i)},
                    name=label,
                )

        if feature_has_nulls:
            # Null values are plotted as diamonds as rightmost point.
            df_i_null = df_i.filter(pl.col(feature_name).is_null())

            if is_string or is_categorical:
                x_null = np.array([n_x - 1])
            else:
                x_min = df_i[feature_name].min()
                x_max = df_i[feature_name].max()
                if n_x == 1:
                    # df_i[feature_name] is the null value.
                    x_null, span = np.array([0]), 1
                elif n_x == 2:
                    x_null, span = np.array([2 * x_max]), 0.5 * x_max / n_models
                else:
                    x_null = np.array([x_max + (x_max - x_min) / n_x])
                    span = (x_null - x_max) / n_models

            if n_models > 1:
                x_null = x_null + (i - n_models // 2) * span * 0.5

            if plot_backend == "matplotlib":
                color = ax.get_lines()[-1].get_color()  # previous line color
                ax.errorbar(
                    x_null,
                    df_i_null["bias_mean"],
                    yerr=df_i_null["bias_stderr"] if with_errorbars_i else None,
                    marker="D",
                    linestyle="None",
                    capsize=4,
                    label=None,
                    color=color,
                )
            else:
                fig.add_scatter(
                    x=x_null,
                    y=df_i_null["bias_mean"],
                    error_y={
                        "type": "data",  # value of error bar given in data coordinates
                        "array": df_i_null["bias_stderr"] if with_errorbars_i else None,
                        "width": 4,
                        "visible": True,
                    },
                    marker={"color": get_plotly_color(i), "symbol": "diamond"},
                    mode="markers",
                    showlegend=False,
                )

    if is_categorical or is_string:
        if feature_has_nulls:
            # Without cast to pl.Uft8, the following error might occur:
            # exceptions.ComputeError: cannot combine categorical under a global string
            # cache with a non cached categorical
            tick_labels = df_i[feature_name].cast(pl.Utf8).fill_null("Null")
        else:
            tick_labels = df_i[feature_name]
        x_label = feature_name
        if plot_backend == "matplotlib":
            ax.set_xticks(np.arange(n_x), labels=tick_labels)
        else:
            fig.update_layout(
                xaxis={
                    "tickmode": "array",
                    "tickvals": np.arange(n_x),
                    "ticktext": tick_labels,
                }
            )
    elif feature_name is not None:
        x_label = "binned " + feature_name
    else:
        x_label = ""

    if feature is None:
        title = "Bias Plot"
    else:
        model_name = array_name(y_pred, default="")
        # test for empty string ""
        title = "Bias Plot" if not model_name else "Bias Plot " + model_name

    if plot_backend == "matplotlib":
        ax.set(xlabel=x_label, ylabel="bias", title=title)
    else:
        fig.update_layout(xaxis_title=x_label, yaxis_title="bias", title=title)

    if with_label and plot_backend == "matplotlib":
        if feature_has_nulls:
            # Add legend entry for diamonds as Null values.
            # Unfortunately, the Null value legend entry often appears first, but we
            # want it at the end.
            ax.scatter([], [], marker="D", color="grey", label="Null values")
            handles, labels = ax.get_legend_handles_labels()
            if (labels[-1] != "Null values") and "Null values" in labels:
                i = labels.index("Null values")
                # i can't be the last index
                labels = labels[:i] + labels[i + 1 :] + [labels[i]]
                handles = handles[:i] + handles[i + 1 :] + [handles[i]]
            ax.legend(handles=handles, labels=labels)
        else:
            ax.legend()
    elif with_label and feature_has_nulls:
        fig.add_scatter(
            x=[None],
            y=[None],
            mode="markers",
            name="Null values",
            marker={"size": 7, "color": "grey", "symbol": "diamond"},
        )

    return ax

plot_marginal(y_obs, y_pred, X, feature_name, predict_function=None, weights=None, *, n_bins=10, bin_method='uniform', n_max=1000, rng=None, ax=None, show_lines='numerical')

Plot marginal observed and predicted conditional on a feature.

This plot provides a means to inspect a model per feature. The average of observed and predicted are plotted as well as a histogram of the feature.

Parameters:

Name Type Description Default
y_obs array-like of shape (n_obs)

Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1].

required
y_pred array-like of shape (n_obs)

Predicted values, e.g. for the conditional expectation of the response, E(Y|X).

required
X array-like of shape (n_obs, n_features)

The dataframe or array of features to be passed to the model predict function.

required
feature_name str or int

Column name (str) or index (int) of feature in X.

required
predict_function callable or None

A callable to get prediction, i.e. predict_function(X). Used to compute partial dependence. If None, partial dependence is omitted.

None
weights array-like of shape (n_obs) or None

Case weights. If given, the bias is calculated as weighted average of the identification function with these weights.

None
n_bins int

The number of bins for numerical features and the maximal number of (most frequent) categories shown for categorical features. Due to ties, the effective number of bins might be smaller than n_bins. Null values are always included in the output, accounting for one bin. NaN values are treated as null values.

10
bin_method str

The method to use for finding bin edges (boundaries). Options are:

  • "quantile"
  • "uniform"
'uniform'
n_max int or None

Used only for partial dependence computation. The number of rows to subsample from X. This speeds up computation, in particular for slow predict functions.

1000
rng (Generator, int or None)

Used only for partial dependence computation. The random number generator used for subsampling of n_max rows. The input is internally wrapped by np.random.default_rng(rng).

None
ax matplotlib.axes.Axes or plotly Figure

Axes object to draw the plot onto, otherwise uses the current Axes.

None
show_lines str

Option for how to display mean values and partial dependence:

  • "always": Always draw lines.
  • "numerical": String and categorical features are drawn as points, numerical ones as lines.
'numerical'

Returns:

Name Type Description
ax

Either the matplotlib axes or the plotly figure. This is configurable by setting the plot_backend via model_diagnostics.set_config or model_diagnostics.config_context.

Examples:

If you wish to plot multiple features at once with subfigures, here is how to do it with matplotlib:

from math import ceil
import matplotlib.pyplot as plt
import numpy as np
from model_diagnostics.calibration import plot_marginal

# Replace by your own data and model.
n_obs = 100
y_obs = np.arange(n_obs)
X = np.ones((n_obs, 2))
X[:, 0] = np.sin(np.arange(n_obs))
X[:, 1] = y_obs ** 2

def model_predict(X):
    s = 0.5 * n_obs * np.sin(X)
    return s.sum(axis=1) + np.sqrt(X[:, 1])

# Now the plotting.
feature_list = [0, 1]
n_rows, n_cols = ceil(len(feature_list) / 2), 2
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, sharey=True)
for i, ax in enumerate(axs):
    plot_marginal(
        y_obs=y_obs,
        y_pred=model_predict(X),
        X=X,
        feature_name=feature_list[i],
        predict_function=model_predict,
        ax=ax,
    )
fig.tight_layout()

For plotly, use the helper function add_marginal_subplot:

from math import ceil
import numpy as np
from model_diagnostics import config_context
from plotly.subplots import make_subplots
from model_diagnostics.calibration import add_marginal_subplot, plot_marginal

# Replace by your own data and model.
n_obs = 100
y_obs = np.arange(n_obs)
X = np.ones((n_obs, 2))
X[:, 0] = np.sin(np.arange(n_obs))
X[:, 1] = y_obs ** 2

def model_predict(X):
    s = 0.5 * n_obs * np.sin(X)
    return s.sum(axis=1) + np.sqrt(X[:, 1])

# Now the plotting.
feature_list = [0, 1]
n_rows, n_cols = ceil(len(feature_list) / 2), 2
fig = make_subplots(
    rows=n_rows,
    cols=n_cols,
    vertical_spacing=0.3 / n_rows,  # equals default
    # subplot_titles=feature_list,  # maybe
    specs=[[{"secondary_y": True}] * n_cols] * n_rows,  # This is important!
)
for row in range(n_rows):
    for col in range(n_cols):
        i = n_cols * row + col
        with config_context(plot_backend="plotly"):
            subfig = plot_marginal(
                y_obs=y_obs,
                y_pred=model_predict(X),
                X=X,
                feature_name=feature_list[i],
                predict_function=model_predict,
            )
        add_marginal_subplot(subfig, fig, row, col)
fig.show()
Source code in src/model_diagnostics/calibration/plots.py
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
def plot_marginal(
    y_obs: npt.ArrayLike,
    y_pred: npt.ArrayLike,
    X: npt.ArrayLike,
    feature_name: Union[str, int],
    predict_function: Optional[Callable] = None,
    weights: Optional[npt.ArrayLike] = None,
    *,
    n_bins: int = 10,
    bin_method: str = "uniform",
    n_max: int = 1000,
    rng: Optional[Union[np.random.Generator, int]] = None,
    ax: Optional[mpl.axes.Axes] = None,
    show_lines: str = "numerical",
):
    """Plot marginal observed and predicted conditional on a feature.

    This plot provides a means to inspect a model per feature.
    The average of observed and predicted are plotted as well as a histogram of the
    feature.

    Parameters
    ----------
    y_obs : array-like of shape (n_obs)
        Observed values of the response variable.
        For binary classification, y_obs is expected to be in the interval [0, 1].
    y_pred : array-like of shape (n_obs)
        Predicted values, e.g. for the conditional expectation of the response,
        `E(Y|X)`.
    X : array-like of shape (n_obs, n_features)
        The dataframe or array of features to be passed to the model predict function.
    feature_name : str or int
        Column name (str) or index (int) of feature in `X`.
    predict_function : callable or None
        A callable to get prediction, i.e. `predict_function(X)`. Used to compute
        partial dependence. If `None`, partial dependence is omitted.
    weights : array-like of shape (n_obs) or None
        Case weights. If given, the bias is calculated as weighted average of the
        identification function with these weights.
    n_bins : int
        The number of bins for numerical features and the maximal number of (most
        frequent) categories shown for categorical features. Due to ties, the effective
        number of bins might be smaller than `n_bins`. Null values are always included
        in the output, accounting for one bin. NaN values are treated as null values.
    bin_method : str
        The method to use for finding bin edges (boundaries). Options are:

        - "quantile"
        - "uniform"
    n_max : int or None
        Used only for partial dependence computation. The number of rows to subsample
        from X. This speeds up computation, in particular for slow predict functions.
    rng : np.random.Generator, int or None
        Used only for partial dependence computation. The random number generator used
        for subsampling of `n_max` rows. The input is internally wrapped by
        `np.random.default_rng(rng)`.
    ax : matplotlib.axes.Axes or plotly Figure
        Axes object to draw the plot onto, otherwise uses the current Axes.
    show_lines : str
        Option for how to display mean values and partial dependence:

        - "always": Always draw lines.
        - "numerical": String and categorical features are drawn as points, numerical
          ones as lines.

    Returns
    -------
    ax :
        Either the matplotlib axes or the plotly figure. This is configurable by
        setting the `plot_backend` via
        [`model_diagnostics.set_config`][model_diagnostics.set_config] or
        [`model_diagnostics.config_context`][model_diagnostics.config_context].

    Examples
    -----
    If you wish to plot multiple features at once with subfigures, here is how to do it
    with matplotlib:

    ```py
    from math import ceil
    import matplotlib.pyplot as plt
    import numpy as np
    from model_diagnostics.calibration import plot_marginal

    # Replace by your own data and model.
    n_obs = 100
    y_obs = np.arange(n_obs)
    X = np.ones((n_obs, 2))
    X[:, 0] = np.sin(np.arange(n_obs))
    X[:, 1] = y_obs ** 2

    def model_predict(X):
        s = 0.5 * n_obs * np.sin(X)
        return s.sum(axis=1) + np.sqrt(X[:, 1])

    # Now the plotting.
    feature_list = [0, 1]
    n_rows, n_cols = ceil(len(feature_list) / 2), 2
    fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, sharey=True)
    for i, ax in enumerate(axs):
        plot_marginal(
            y_obs=y_obs,
            y_pred=model_predict(X),
            X=X,
            feature_name=feature_list[i],
            predict_function=model_predict,
            ax=ax,
        )
    fig.tight_layout()
    ```

    For plotly, use the helper function
    [`add_marginal_subplot`][model_diagnostics.calibration.plots.add_marginal_subplot]:

    ```py
    from math import ceil
    import numpy as np
    from model_diagnostics import config_context
    from plotly.subplots import make_subplots
    from model_diagnostics.calibration import add_marginal_subplot, plot_marginal

    # Replace by your own data and model.
    n_obs = 100
    y_obs = np.arange(n_obs)
    X = np.ones((n_obs, 2))
    X[:, 0] = np.sin(np.arange(n_obs))
    X[:, 1] = y_obs ** 2

    def model_predict(X):
        s = 0.5 * n_obs * np.sin(X)
        return s.sum(axis=1) + np.sqrt(X[:, 1])

    # Now the plotting.
    feature_list = [0, 1]
    n_rows, n_cols = ceil(len(feature_list) / 2), 2
    fig = make_subplots(
        rows=n_rows,
        cols=n_cols,
        vertical_spacing=0.3 / n_rows,  # equals default
        # subplot_titles=feature_list,  # maybe
        specs=[[{"secondary_y": True}] * n_cols] * n_rows,  # This is important!
    )
    for row in range(n_rows):
        for col in range(n_cols):
            i = n_cols * row + col
            with config_context(plot_backend="plotly"):
                subfig = plot_marginal(
                    y_obs=y_obs,
                    y_pred=model_predict(X),
                    X=X,
                    feature_name=feature_list[i],
                    predict_function=model_predict,
                )
            add_marginal_subplot(subfig, fig, row, col)
    fig.show()
    ```

    """
    if ax is None:
        plot_backend = get_config()["plot_backend"]
        if plot_backend == "matplotlib":
            ax = plt.gca()
        else:
            from plotly.subplots import make_subplots

            # fig = ax = go.Figure()
            fig = ax = make_subplots(specs=[[{"secondary_y": True}]])
    elif isinstance(ax, mpl.axes.Axes):
        plot_backend = "matplotlib"
    elif is_plotly_figure(ax):
        plot_backend = "plotly"
        fig = ax
        # Take care to mimick make_subplots for secondary y axis.
        # The following code is by comparing
        #   make_subplots(specs=[[{"secondary_y": True}]])
        # vs
        #   go.Figure()
        if not hasattr(fig.layout, "yaxis2"):
            fig.update_layout(
                xaxis={"anchor": "y", "domain": [0.0, 0.94]},
                yaxis={"anchor": "x", "domain": [0.0, 1.0]},
                yaxis2={"anchor": "x", "overlaying": "y", "side": "right"},
            )
            SubplotRef = collections.namedtuple(  # noqa: PYI024
                "SubplotRef", ("subplot_type", "layout_keys", "trace_kwargs")
            )
            fig._grid_ref = [  # noqa: SLF001
                [
                    (
                        SubplotRef(
                            subplot_type="xy",
                            layout_keys=("xaxis", "yaxis"),
                            trace_kwargs={"xaxis": "x", "yaxis": "y"},
                        ),
                        SubplotRef(
                            subplot_type="xy",
                            layout_keys=("xaxis", "yaxis2"),
                            trace_kwargs={"xaxis": "x", "yaxis": "y2"},
                        ),
                    )
                ]
            ]
            fig._grid_str = "This is the format of your plot grid:\n[ (1,1) x,y,y2 ]\n"  # noqa: SLF001
    else:
        msg = (
            "The ax argument must be None, a matplotlib Axes or a plotly Figure, "
            f"got {type(ax)}."
        )
        raise ValueError(msg)

    if show_lines not in ("always", "numerical"):
        msg = (
            f"The argument show_lines mut be 'always' or 'numerical'; got {show_lines}."
        )
        raise ValueError(msg)

    # estimator = getattr(predict_callable, "__self__", None)
    n_pred = length_of_second_dimension(y_pred)
    if n_pred > 1:
        msg = (
            f"Parameter y_pred has shape (n_obs, {n_pred}), but only "
            "(n_obs) and (n_obs, 1) are allowd."
        )
        raise ValueError(msg)

    df = compute_marginal(
        y_obs=y_obs,
        y_pred=y_pred,
        X=X,
        feature_name=feature_name,
        predict_function=predict_function,
        weights=weights,
        n_bins=n_bins,
        bin_method=bin_method,
        n_max=n_max,
        rng=rng,
    )
    feature_name = df.columns[0]

    feature_has_nulls = df[feature_name].null_count() > 0
    n_bins_eff = df.shape[0] - feature_has_nulls
    # If df contains the columns "bin_edges", it's a numerical feature.
    is_categorical = "bin_edges" not in df.columns

    n_x = df[feature_name].n_unique()

    # marginal plot
    if is_categorical and feature_has_nulls:
        # We want the Null values at the end and therefore sort again.
        df = df.sort(feature_name, descending=False, nulls_last=True)
    df_no_nulls = df.filter(pl.col(feature_name).is_not_null())

    # Numerical columns are sometimes better treated as categorical.
    num_as_cat = False
    if not is_categorical:
        bin_edges = df_no_nulls.get_column("bin_edges")
        num_as_cat = (
            # left bin edge = right bin edge
            (bin_edges.arr.first() == bin_edges.arr.last())
            # feature == left bin edge
            | (bin_edges.arr.first() == df_no_nulls.get_column(feature_name))
            # feature == right bin edge
            | (bin_edges.arr.last() == df_no_nulls.get_column(feature_name))
            # standard deviation of feature in bin == 0
            | (bin_edges.arr.get(1) == 0)
        ).all()

    # First the histogram of weights on secondary y-axis.
    # Other graph elements should appear on top of it. For plotly, we therefore need to
    # plot the histogram on the primary y-axis and put primary to the right and
    # secondary to the left. All other plotly graphs are put on the secondary yaxis.
    #
    # We x-shift a little for a better visual.
    x = (
        np.arange(n_x - feature_has_nulls)
        if is_categorical
        else df_no_nulls[feature_name]
    )
    if plot_backend == "matplotlib":
        ax2 = ax.twinx()
        if is_categorical or num_as_cat:
            ax2.bar(
                x=x,
                height=df_no_nulls["weights"] / df["weights"].sum(),
                color="lightgrey",
            )
        else:
            # We can't use
            #   ax2.hist(
            #       x=df_no_nulls[feature_name],
            #       weights=df_no_nulls["weights"] / df["weights"].sum(),
            #       bins=np.r_[bin_edges[0][0], bin_edges.arr.last()],  # n_bins_eff,
            #       color="lightgrey",
            #       edgecolor="grey",
            #       rwidth=0.8 if n_bins_eff <= 2 else None,
            #   )
            # because we might have empty bins.
            ax2.bar(
                x=0.5 * (bin_edges.arr.last() + bin_edges.arr.first()),
                height=df_no_nulls["weights"] / df["weights"].sum(),
                width=(bin_edges.arr.last() - bin_edges.arr.first())
                * (1 if n_bins_eff > 2 else 0.8),
                color="lightgrey",
                edgecolor="grey",
            )
        # https://stackoverflow.com/questions/30505616/how-to-arrange-plots-of-secondary-axis-to-be-below-plots-of-primary-axis-in-matp
        ax.set_zorder(ax2.get_zorder() + 1)
        ax.set_frame_on(False)
    else:
        if is_categorical or num_as_cat:
            # fig.add_histogram(
            #     x=x, # df_no_nulls[feature_name],
            #     y=df_no_nulls["weights"] / df["weights"].sum(),
            #     histfunc="sum",
            #     marker={"color": "lightgrey"},
            #     secondary_y=False,
            #     showlegend=False,
            # )
            fig.add_bar(
                x=x,
                y=df_no_nulls["weights"] / df["weights"].sum(),
                marker={"color": "lightgrey"},
                secondary_y=False,
                showlegend=False,
            )
        else:
            fig.add_bar(
                x=0.5 * (bin_edges.arr.last() + bin_edges.arr.first()),
                y=df_no_nulls["weights"] / df["weights"].sum(),
                width=bin_edges.arr.last() - bin_edges.arr.first(),
                marker={"color": "lightgrey", "line": {"width": 1.0, "color": "grey"}},
                secondary_y=False,
                showlegend=False,
            )
        fig.update_layout(yaxis_side="right", yaxis2_side="left")
        if n_bins_eff <= 2:
            fig.update_layout(bargap=0.2)

    if feature_has_nulls:
        df_null = df.filter(pl.col(feature_name).is_null())
        # Null values are plotted as rightmost point at x_null.
        if is_categorical:
            x_null = np.array([n_x - 1])
            # matplotlib default width = 0.8
            width = 0.8 if plot_backend == "matplotlib" else None
        else:
            x_min = df[feature_name].min()
            x_max = df[feature_name].max()
            if n_x == 1:
                # df[feature_name] is the null value.
                x_null = np.array([0])
            elif n_x == 2:
                x_null = np.array([2 * x_max])
            else:
                x_null = np.array([x_max + (x_max - x_min) / n_x])
            width = x_null - bin_edges.arr.last().max()
            if width is not None and width <= 0:
                width = (x_max - x_min) / n_x / 2.0

        # Null value histogram
        if plot_backend == "matplotlib":
            ax2.bar(
                x=x_null,
                height=df_null["weights"] / df["weights"].sum(),
                width=width,
                color="lightgrey",
            )
        else:
            fig.add_bar(
                x=x_null,
                y=df_null["weights"] / df["weights"].sum(),
                width=width,
                marker={"color": "lightgrey"},
                secondary_y=False,
                showlegend=False,
            )

    plot_items = ["y_obs_mean", "y_pred_mean"]
    if predict_function is not None:
        plot_items.append("partial_dependence")
    label_dict = {
        "y_obs_mean": "mean y_obs",
        "y_pred_mean": "mean y_pred",
        "partial_dependence": "partial dependence",
    }
    for i, m in enumerate(plot_items):
        label = label_dict[m]
        if plot_backend == "matplotlib":
            linestyle = "dashed" if m == "partial_dependence" else "solid"
        else:
            line = {
                "color": get_plotly_color(i),
                "dash": "dash" if m == "partial_dependence" else None,
            }
        if is_categorical:
            # We x-shift a little for a better visual.
            x = np.arange(n_x - feature_has_nulls)
            if plot_backend == "matplotlib":
                ax.plot(
                    x,
                    df_no_nulls[m],
                    marker="o",
                    linestyle="None" if show_lines == "numerical" else linestyle,
                    label=label,
                )
            else:
                fig.add_scatter(
                    x=x,
                    y=df_no_nulls[m],
                    marker={"color": get_plotly_color(i)},
                    mode="markers" if show_lines == "numerical" else "lines+markers",
                    line=None if show_lines == "numerical" else line,
                    name=label,
                    secondary_y=True,
                )
        elif plot_backend == "matplotlib":
            ax.plot(
                df[feature_name],
                df[m],
                linestyle=linestyle,
                marker="o",
                label=label,
            )
        else:
            fig.add_scatter(
                x=df[feature_name],
                y=df[m],
                marker_symbol="circle",
                mode="lines+markers",
                line=line,
                name=label,
                secondary_y=True,
            )

        if feature_has_nulls:
            # Null values are plotted as diamonds as rightmost point.
            if plot_backend == "matplotlib":
                color = ax.get_lines()[-1].get_color()  # previous line color
                ax.plot(
                    x_null,
                    df_null[m],
                    marker="D",
                    linestyle="None",
                    label=None,
                    color=color,
                )
            else:
                fig.add_scatter(
                    x=x_null,
                    y=df_null[m],
                    marker={"color": get_plotly_color(i), "symbol": "diamond"},
                    mode="markers",
                    secondary_y=True,
                    showlegend=False,
                )

    if is_categorical:
        if df[feature_name].null_count() > 0:
            # Without cast to pl.Uft8, the following error might occur:
            # exceptions.ComputeError: cannot combine categorical under a global string
            # cache with a non cached categorical
            tick_labels = df[feature_name].cast(pl.Utf8).fill_null("Null")
        else:
            tick_labels = df[feature_name]
        x_label = feature_name
        if plot_backend == "matplotlib":
            ax.set_xticks(np.arange(n_x), labels=tick_labels)
        else:
            fig.update_layout(
                xaxis={
                    "tickmode": "array",
                    "tickvals": np.arange(n_x),
                    "ticktext": tick_labels,
                }
            )
    elif feature_name is not None:
        x_label = "binned " + str(feature_name)
    else:
        x_label = ""

    model_name = array_name(y_pred, default="")
    # test for empty string ""
    title = "Marginal Plot" if not model_name else "Marginal Plot " + model_name

    if plot_backend == "matplotlib":
        ax.set(xlabel=x_label, ylabel="y", title=title)
    else:
        fig.update_layout(xaxis_title=x_label, yaxis2_title="y", title=title)
        fig["layout"]["yaxis"]["showgrid"] = False

    if plot_backend == "matplotlib":
        if feature_has_nulls:
            # Add legend entry for diamonds as Null values.
            # Unfortunately, the Null value legend entry often appears first, but we
            # want it at the end.
            ax.scatter([], [], marker="D", color="grey", label="Null values")
            handles, labels = ax.get_legend_handles_labels()
            if (labels[-1] != "Null values") and "Null values" in labels:
                i = labels.index("Null values")
                # i can't be the last index
                labels = labels[:i] + labels[i + 1 :] + [labels[i]]
                handles = handles[:i] + handles[i + 1 :] + [handles[i]]
            ax.legend(handles=handles, labels=labels)
        else:
            ax.legend()
    elif feature_has_nulls:
        fig.add_scatter(
            x=[None],
            y=[None],
            mode="markers",
            name="Null values",
            marker={"size": 7, "color": "grey", "symbol": "diamond"},
            secondary_y=True,
        )

    return ax

plot_reliability_diagram(y_obs, y_pred, weights=None, *, functional='mean', level=0.5, n_bootstrap=None, confidence_level=0.9, diagram_type='reliability', ax=None)

Plot a reliability diagram.

A reliability diagram or calibration curve assesses auto-calibration. It plots the conditional expectation given the predictions E(y_obs|y_pred) (y-axis) vs the predictions y_pred (x-axis). The conditional expectation is estimated via isotonic regression (PAV algorithm) of y_obs on y_pred. See Notes for further details.

Parameters:

Name Type Description Default
y_obs array-like of shape (n_obs)

Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1].

required
y_pred array-like of shape (n_obs) or (n_obs, n_models)

Predicted values, e.g. for the conditional expectation of the response, E(Y|X).

required
weights array-like of shape (n_obs) or None

Case weights.

None
functional str

The functional that is induced by the identification function V. Options are:

  • "mean". Argument level is neglected.
  • "median". Argument level is neglected.
  • "expectile"
  • "quantile"
'mean'
level float

The level of the expectile or quantile. (Often called \(\alpha\).) It must be 0 <= level <= 1. level=0.5 and functional="expectile" gives the mean. level=0.5 and functional="quantile" gives the median.

0.5
n_bootstrap int or None

If not None, then scipy.stats.bootstrap with n_resamples=n_bootstrap is used to calculate confidence intervals at level confidence_level.

None
confidence_level float

Confidence level for bootstrap uncertainty regions.

0.9
diagram_type str
  • "reliability": Plot a reliability diagram.
  • "bias": Plot roughly a 45 degree rotated reliability diagram. The resulting plot is similar to plot_bias, i.e. y_pred - E(y_obs|y_pred) vs y_pred.
'reliability'
ax matplotlib.axes.Axes or plotly Figure

Axes object to draw the plot onto, otherwise uses the current Axes.

None

Returns:

Name Type Description
ax

Either the matplotlib axes or the plotly figure. This is configurable by setting the plot_backend via model_diagnostics.set_config or model_diagnostics.config_context.

Notes

The expectation conditional on the predictions is The expectation conditional on the predictions is \(E(Y|y_{pred})\). This object is estimated by the pool-adjacent violator (PAV) algorithm, which has very desirable properties:

- It is non-parametric without any tuning parameter. Thus, the results are
  easily reproducible.
- Optimal selection of bins
- Statistical consistent estimator

For details, refer to [Dimitriadis2021].

References
[Dimitriadis2021]

T. Dimitriadis, T. Gneiting, and A. I. Jordan. "Stable reliability diagrams for probabilistic classifiers". In: Proceedings of the National Academy of Sciences 118.8 (2021), e2016191118. doi:10.1073/pnas.2016191118.

Source code in src/model_diagnostics/calibration/plots.py
def plot_reliability_diagram(
    y_obs: npt.ArrayLike,
    y_pred: npt.ArrayLike,
    weights: Optional[npt.ArrayLike] = None,
    *,
    functional: str = "mean",
    level: float = 0.5,
    n_bootstrap: Optional[str] = None,
    confidence_level: float = 0.9,
    diagram_type: str = "reliability",
    ax: Optional[mpl.axes.Axes] = None,
):
    r"""Plot a reliability diagram.

    A reliability diagram or calibration curve assesses auto-calibration. It plots the
    conditional expectation given the predictions `E(y_obs|y_pred)` (y-axis) vs the
    predictions `y_pred` (x-axis).
    The conditional expectation is estimated via isotonic regression (PAV algorithm)
    of `y_obs` on `y_pred`.
    See [Notes](#notes) for further details.

    Parameters
    ----------
    y_obs : array-like of shape (n_obs)
        Observed values of the response variable.
        For binary classification, y_obs is expected to be in the interval [0, 1].
    y_pred : array-like of shape (n_obs) or (n_obs, n_models)
        Predicted values, e.g. for the conditional expectation of the response,
        `E(Y|X)`.
    weights : array-like of shape (n_obs) or None
        Case weights.
    functional : str
        The functional that is induced by the identification function `V`. Options are:

        - `"mean"`. Argument `level` is neglected.
        - `"median"`. Argument `level` is neglected.
        - `"expectile"`
        - `"quantile"`
    level : float
        The level of the expectile or quantile. (Often called \(\alpha\).)
        It must be `0 <= level <= 1`.
        `level=0.5` and `functional="expectile"` gives the mean.
        `level=0.5` and `functional="quantile"` gives the median.
    n_bootstrap : int or None
        If not `None`, then `scipy.stats.bootstrap` with `n_resamples=n_bootstrap`
        is used to calculate confidence intervals at level `confidence_level`.
    confidence_level : float
        Confidence level for bootstrap uncertainty regions.
    diagram_type: str
        - `"reliability"`: Plot a reliability diagram.
        - `"bias"`: Plot roughly a 45 degree rotated reliability diagram. The resulting
          plot is similar to `plot_bias`, i.e. `y_pred - E(y_obs|y_pred)` vs `y_pred`.
    ax : matplotlib.axes.Axes or plotly Figure
        Axes object to draw the plot onto, otherwise uses the current Axes.

    Returns
    -------
    ax :
        Either the matplotlib axes or the plotly figure. This is configurable by
        setting the `plot_backend` via
        [`model_diagnostics.set_config`][model_diagnostics.set_config] or
        [`model_diagnostics.config_context`][model_diagnostics.config_context].

    Notes
    -----
    [](){#notes}
    The expectation conditional on the predictions is \(E(Y|y_{pred})\). This object is
    estimated by the pool-adjacent violator (PAV) algorithm, which has very desirable
    properties:

        - It is non-parametric without any tuning parameter. Thus, the results are
          easily reproducible.
        - Optimal selection of bins
        - Statistical consistent estimator

    For details, refer to `[Dimitriadis2021]`.

    References
    ----------
    `[Dimitriadis2021]`

    :   T. Dimitriadis, T. Gneiting, and A. I. Jordan.
        "Stable reliability diagrams for probabilistic classifiers".
        In: Proceedings of the National Academy of Sciences 118.8 (2021), e2016191118.
        [doi:10.1073/pnas.2016191118](https://doi.org/10.1073/pnas.2016191118).
    """
    if ax is None:
        plot_backend = get_config()["plot_backend"]
        if plot_backend == "matplotlib":
            ax = plt.gca()
        else:
            import plotly.graph_objects as go

            fig = ax = go.Figure()
    elif isinstance(ax, mpl.axes.Axes):
        plot_backend = "matplotlib"
    elif is_plotly_figure(ax):
        import plotly.graph_objects as go

        plot_backend = "plotly"
        fig = ax
    else:
        msg = (
            "The ax argument must be None, a matplotlib Axes or a plotly Figure, "
            f"got {type(ax)}."
        )
        raise ValueError(msg)

    if diagram_type not in ("reliability", "bias"):
        msg = (
            "Parameter diagram_type must be either 'reliability', 'bias', "
            f"got {diagram_type}."
        )
        raise ValueError(msg)

    if (n_cols := length_of_second_dimension(y_obs)) > 0:
        if n_cols == 1:
            y_obs = get_second_dimension(y_obs, 0)
        else:
            msg = (
                f"Array-like y_obs has more than 2 dimensions, y_obs.shape[1]={n_cols}"
            )
            raise ValueError(msg)

    y_min, y_max = get_array_min_max(y_pred)
    if diagram_type == "reliability":
        if plot_backend == "matplotlib":
            ax.plot([y_min, y_max], [y_min, y_max], color="k", linestyle="dotted")
        else:
            fig.add_scatter(
                x=[y_min, y_max],
                y=[y_min, y_max],
                mode="lines",
                line={"color": "black", "dash": "dot"},
                showlegend=False,
            )
    elif plot_backend == "matplotlib":
        # horizontal line at y=0

        # The following plots in axis coordinates
        # ax.axhline(y=0, xmin=0, xmax=1, color="k", linestyle="dotted")
        # but we plot in data coordinates instead.
        ax.hlines(0, xmin=y_min, xmax=y_max, color="k", linestyle="dotted")
    else:
        # horizontal line at y=0
        fig.add_hline(y=0, line={"color": "black", "dash": "dot"}, showlegend=False)

    if n_bootstrap is not None:
        if functional == "mean":

            def iso_statistic(y_obs, y_pred, weights=None, x_values=None):
                iso_b = (
                    IsotonicRegression_skl(out_of_bounds="clip")
                    .set_output(transform="default")
                    .fit(y_pred, y_obs, sample_weight=weights)
                )
                return iso_b.predict(x_values)

        else:

            def iso_statistic(y_obs, y_pred, weights=None, x_values=None):
                iso_b = IsotonicRegression(functional=functional, level=level).fit(
                    y_pred, y_obs, sample_weight=weights
                )
                return iso_b.predict(x_values)

    n_pred = length_of_second_dimension(y_pred)
    pred_names, _ = get_sorted_array_names(y_pred)

    for i in range(len(pred_names)):
        y_pred_i = y_pred if n_pred == 0 else get_second_dimension(y_pred, i)

        if functional == "mean":
            iso = (
                IsotonicRegression_skl()
                .set_output(transform="default")
                .fit(y_pred_i, y_obs, sample_weight=weights)
            )
        else:
            iso = IsotonicRegression(functional=functional, level=level).fit(
                y_pred_i, y_obs, sample_weight=weights
            )

        # confidence intervals
        if n_bootstrap is not None:
            data: tuple[npt.ArrayLike, ...]
            data = (y_obs, y_pred_i) if weights is None else (y_obs, y_pred_i, weights)

            boot = bootstrap(
                data=data,
                statistic=partial(iso_statistic, x_values=iso.X_thresholds_),
                n_resamples=n_bootstrap,
                paired=True,
                confidence_level=confidence_level,
                # Note: method="bca" might result in
                # DegenerateDataWarning: The BCa confidence interval cannot be
                # calculated. This problem is known to occur when the distribution is
                # degenerate or the statistic is np.min.
                method="basic",
            )

            # We make the interval conservatively monotone increasing by applying
            # np.maximum.accumulate etc.
            # Conservative here means smaller intervals such that it is more likely
            # for the prediction to be out of the intervals leading to the conclusion
            # of "not auto-calibrated".
            lower = np.maximum.accumulate(boot.confidence_interval.low)
            upper = np.minimum.accumulate(boot.confidence_interval.high[::-1])[::-1]
            if diagram_type == "bias":
                lower = iso.X_thresholds_ - lower
                upper = iso.X_thresholds_ - upper
            if plot_backend == "matplotlib":
                ax.fill_between(iso.X_thresholds_, lower, upper, alpha=0.1)
            else:
                # plotly has not equivalent of fill_between and needs a bit more coding
                color = get_plotly_color(i)
                fig.add_scatter(
                    x=np.r_[iso.X_thresholds_, iso.X_thresholds_[::-1]],
                    y=np.r_[lower, upper[::-1]],
                    fill="toself",
                    fillcolor=color,
                    hoverinfo="skip",
                    line={"color": color},
                    mode="lines",
                    opacity=0.1,
                    showlegend=False,
                )

        # reliability curve
        label = pred_names[i] if n_pred >= 2 else None

        y_plot = (
            iso.y_thresholds_
            if diagram_type == "reliability"
            else iso.X_thresholds_ - iso.y_thresholds_
        )
        if plot_backend == "matplotlib":
            ax.plot(iso.X_thresholds_, y_plot, label=label)
        else:
            fig.add_scatter(
                x=iso.X_thresholds_,
                y=y_plot,
                mode="lines",
                line={"color": get_plotly_color(i)},
                name=label,
            )

    xlabel_mapping = {
        "mean": "E(Y|X)",
        "median": "median(Y|X)",
        "expectile": f"{level}-expectile(Y|X)",
        "quantile": f"{level}-quantile(Y|X)",
    }
    ylabel_mapping = {
        "mean": "E(Y|prediction)",
        "median": "median(Y|prediction)",
        "expectile": f"{level}-expectile(Y|prediction)",
        "quantile": f"{level}-quantile(Y|prediction)",
    }
    xlabel = "prediction for " + xlabel_mapping[functional]
    if diagram_type == "reliability":
        ylabel = "estimated " + ylabel_mapping[functional]
        title = "Reliability Diagram"
    else:
        ylabel = "prediction - estimated " + ylabel_mapping[functional]
        title = "Bias Reliability Diagram"

    if n_pred <= 1 and len(pred_names[0]) > 0:
        title = title + " " + pred_names[0]

    if plot_backend == "matplotlib":
        if n_pred >= 2:
            ax.legend()
        ax.set_title(title)
        ax.set(xlabel=xlabel, ylabel=ylabel)
    else:
        if n_pred <= 1:
            fig.update_layout(showlegend=False)
        fig.update_layout(xaxis_title=xlabel, yaxis_title=ylabel, title=title)

    return ax