calibration
calibration
¶
add_marginal_subplot(subfig, fig, row, col)
¶
Add a plotly subplot from plot_marginal to a multi-plot figure.
This auxiliary function is accompanies
plot_marginal
in order to ease
plotting with subfigures with the plotly backend.
For it to work, you must call plotly's make_subplots
with the specs
argument
and set the appropriate number of {"secondary_y": True}
in a list of lists.
from plotly.subplots import make_subplots
n_rows, n_cols = ...
fig = make_subplots(
rows=n_rows,
cols=n_cols,
specs=[[{"secondary_y": True}] * n_cols] * n_rows, # This is important!
)
plot_marginal
uses a secondary yaxis (and swapped sides with
the primary yaxis).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
subfig
|
plotly Figure
|
The subfigure which is added to |
required |
fig
|
plotly Figure
|
The multi-plot figure to which |
required |
row
|
int
|
The (0-based) row index of |
required |
col
|
int
|
The (0-based) column index of |
required |
Returns:
Type | Description |
---|---|
fig
|
The plotly figure |
Source code in src/model_diagnostics/calibration/plots.py
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 |
|
compute_bias(y_obs, y_pred, feature=None, weights=None, *, functional='mean', level=0.5, n_bins=10, bin_method='quantile')
¶
Compute generalised bias conditional on a feature.
This function computes and aggregates the generalised bias, i.e. the values of the
canonical identification function, versus (grouped by) a feature.
This is a good way to assess whether a model is conditionally calibrated or not.
Well calibrated models have bias terms around zero.
For the mean functional, the generalised bias is the negative residual
y_pred - y_obs
.
See Notes for further details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_obs
|
array-like of shape (n_obs)
|
Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1]. |
required |
y_pred
|
array-like of shape (n_obs) or (n_obs, n_models)
|
Predicted values, e.g. for the conditional expectation of the response,
|
required |
feature
|
array-like of shape (n_obs) or None
|
Some feature column. |
None
|
weights
|
array-like of shape (n_obs) or None
|
Case weights. If given, the bias is calculated as weighted average of the identification function with these weights. Note that the standard errors and p-values in the output are based on the assumption that the variance of the bias is inverse proportional to the weights. See the Notes section for details. |
None
|
functional
|
str
|
The functional that is induced by the identification function
|
'mean'
|
level
|
float
|
The level of the expectile of quantile. (Often called \(\alpha\).)
It must be |
0.5
|
n_bins
|
int
|
The number of bins for numerical features and the maximal number of (most
frequent) categories shown for categorical features. Due to ties, the effective
number of bins might be smaller than |
10
|
bin_method
|
str
|
The method to use for finding bin edges (boundaries). Options are:
|
'quantile'
|
Returns:
Name | Type | Description |
---|---|---|
df |
DataFrame
|
The result table contains at least the columns:
If
|
Notes
A model
A model \(m(X)\) is conditionally calibrated iff
\(\mathbb{E}(V(m(X), Y)|X)=0\) almost surely with canonical identification
function \(V\).
The empirical version, given some data, reads
\(\bar{V} = \frac{1}{n}\sum_i \phi(x_i) V(m(x_i), y_i)\) with a test function
\(\phi(x_i)\) that projects on the specified feature.
For a feature with only two distinct values "a"
and "b"
, this becomes
\(\bar{V} = \frac{1}{n_a}\sum_{i \text{ with }x_i=a} V(m(a), y_i)\) with
\(n_a=\sum_{i \text{ with }x_i=a}\) and similar for "b"
.
With case weights, this reads
\(\bar{V} = \frac{1}{\sum_i w_i}\sum_i w_i \phi(x_i) V(m(x_i), y_i)\).
This generalises the classical residual (up to a minus sign) for target functionals
other than the mean. See [FLM2022]
.
The standard error for \(\bar{V}\) is calculated in the standard way as \(\mathrm{SE} = \sqrt{\operatorname{Var}(\bar{V})} = \frac{\sigma}{\sqrt{n}}\) and the standard variance estimator for \(\sigma^2 = \operatorname{Var}(\phi(x_i) V(m(x_i), y_i))\) with Bessel correction, i.e. division by \(n-1\) instead of \(n\).
With case weights, the variance estimator becomes \(\operatorname{Var}(\bar{V}) = \frac{1}{n-1} \frac{1}{\sum_i w_i} \sum_i w_i (V(m(x_i), y_i) - \bar{V})^2\) with the implied relation \(\operatorname{Var}(V(m(x_i), y_i)) \sim \frac{1}{w_i} \). If your weights are for repeated observations, so-called frequency weights, then the above estimate is conservative because it uses \(n - 1\) instead of \((\sum_i w_i) - 1\).
References
[FLM2022]
-
T. Fissler, C. Lorentzen, and M. Mayer. "Model Comparison and Calibration Assessment". (2022) arxiv:2202.12780.
Examples:
>>> compute_bias(y_obs=[0, 0, 1, 1], y_pred=[-1, 1, 1 , 2])
shape: (1, 5)
┌───────────┬────────────┬──────────────┬─────────────┬──────────┐
│ bias_mean ┆ bias_count ┆ bias_weights ┆ bias_stderr ┆ p_value │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ f64 ┆ u32 ┆ f64 ┆ f64 ┆ f64 │
╞═══════════╪════════════╪══════════════╪═════════════╪══════════╡
│ 0.25 ┆ 4 ┆ 4.0 ┆ 0.478714 ┆ 0.637618 │
└───────────┴────────────┴──────────────┴─────────────┴──────────┘
>>> compute_bias(y_obs=[0, 0, 1, 1], y_pred=[-1, 1, 1 , 2],
... feature=["a", "a", "b", "b"])
shape: (2, 6)
┌─────────┬───────────┬────────────┬──────────────┬─────────────┬─────────┐
│ feature ┆ bias_mean ┆ bias_count ┆ bias_weights ┆ bias_stderr ┆ p_value │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ u32 ┆ f64 ┆ f64 ┆ f64 │
╞═════════╪═══════════╪════════════╪══════════════╪═════════════╪═════════╡
│ a ┆ 0.0 ┆ 2 ┆ 2.0 ┆ 1.0 ┆ 1.0 │
│ b ┆ 0.5 ┆ 2 ┆ 2.0 ┆ 0.5 ┆ 0.5 │
└─────────┴───────────┴────────────┴──────────────┴─────────────┴─────────┘
Source code in src/model_diagnostics/calibration/identification.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
|
compute_marginal(y_obs, y_pred, X=None, feature_name=None, predict_function=None, weights=None, *, n_bins=10, bin_method='uniform', n_max=1000, rng=None)
¶
Compute the marginal expectation conditional on a single feature.
This function computes the (weighted) average of observed response and predictions conditional on a given feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_obs
|
array-like of shape (n_obs)
|
Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1]. |
required |
y_pred
|
array-like of shape (n_obs) or (n_obs, n_models)
|
Predicted values, e.g. for the conditional expectation of the response,
|
required |
X
|
array-like of shape (n_obs, n_features) or None
|
The dataframe or array of features to be passed to the model predict function. |
None
|
feature_name
|
(int, str or None)
|
Column name (str) or index (int) of feature in |
None
|
predict_function
|
callable or None
|
A callable to get prediction, i.e. |
None
|
weights
|
array-like of shape (n_obs) or None
|
Case weights. If given, the bias is calculated as weighted average of the identification function with these weights. |
None
|
n_bins
|
int
|
The number of bins for numerical features and the maximal number of (most
frequent) categories shown for categorical features. Due to ties, the effective
number of bins might be smaller than |
10
|
bin_method
|
str
|
The method to use for finding bin edges (boundaries). Options are:
|
'uniform'
|
n_max
|
int or None
|
Used only for partial dependence computation. The number of rows to subsample from X. This speeds up computation, in particular for slow predict functions. |
1000
|
rng
|
(Generator, int or None)
|
Used only for partial dependence computation. The random number generator used
for subsampling of |
None
|
Returns:
Name | Type | Description |
---|---|---|
df |
DataFrame
|
The result table contains at least the columns:
If
If
|
Notes
The marginal values are computed as an estimation of:
y_obs
: \(\mathbb{E}(Y|feature)\)y_pred
: \(\mathbb{E}(m(X)|feature)\)
with \(feature\) the column specified by feature_name
.
Computationally that is more or less a group-by-aggregate operation on a dataset.
The standard error for both are calculated in the standard way as \(\mathrm{SE} = \sqrt{\operatorname{Var}(\bar{Y})} = \frac{\sigma}{\sqrt{n}}\) and the standard variance estimator for \(\sigma^2\) with Bessel correction, i.e. division by \(n-1\) instead of \(n\).
With case weights, the variance estimator becomes \(\operatorname{Var}(\bar{Y}) = \frac{1}{n-1} \frac{1}{\sum_i w_i} \sum_i w_i (y_i - \bar{y})^2\) with the implied relation \(\operatorname{Var}(y_i) \sim \frac{1}{w_i} \). If your weights are for repeated observations, so-called frequency weights, then the above estimate is conservative because it uses \(n - 1\) instead of \((\sum_i w_i) - 1\).
Examples:
>>> compute_marginal(y_obs=[0, 0, 1, 1], y_pred=[-1, 1, 1, 2])
shape: (1, 6)
┌────────────┬─────────────┬──────────────┬───────────────┬───────┬─────────┐
│ y_obs_mean ┆ y_pred_mean ┆ y_obs_stderr ┆ y_pred_stderr ┆ count ┆ weights │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ f64 ┆ f64 ┆ f64 ┆ f64 ┆ u32 ┆ f64 │
╞════════════╪═════════════╪══════════════╪═══════════════╪═══════╪═════════╡
│ 0.5 ┆ 0.75 ┆ 0.288675 ┆ 0.629153 ┆ 4 ┆ 4.0 │
└────────────┴─────────────┴──────────────┴───────────────┴───────┴─────────┘
>>> import polars as pl
>>> from sklearn.linear_model import Ridge
>>> pl.Config.set_tbl_width_chars(84)
<class 'polars.config.Config'>
>>> y_obs, X =[0, 0, 1, 1], [[0, 1], [1, 1], [1, 2], [2, 2]]
>>> m = Ridge().fit(X, y_obs)
>>> compute_marginal(y_obs=y_obs, y_pred=m.predict(X), X=X, feature_name=0,
... predict_function=m.predict)
shape: (3, 9)
┌──────────┬─────────┬─────────┬─────────┬───┬───────┬─────────┬─────────┬─────────┐
│ feature ┆ y_obs_m ┆ y_pred_ ┆ y_obs_s ┆ … ┆ count ┆ weights ┆ bin_edg ┆ partial │
│ 0 ┆ ean ┆ mean ┆ tderr ┆ ┆ --- ┆ --- ┆ es ┆ _depend │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ u32 ┆ f64 ┆ --- ┆ ence │
│ f64 ┆ f64 ┆ f64 ┆ f64 ┆ ┆ ┆ ┆ array[f ┆ --- │
│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 64, 3] ┆ f64 │
╞══════════╪═════════╪═════════╪═════════╪═══╪═══════╪═════════╪═════════╪═════════╡
│ 0.0 ┆ 0.0 ┆ 0.1 ┆ 0.0 ┆ … ┆ 1 ┆ 1.0 ┆ [0.0, ┆ 0.3 │
│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 0.0, ┆ │
│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 0.2] ┆ │
│ 1.0 ┆ 0.5 ┆ 0.5 ┆ 0.5 ┆ … ┆ 2 ┆ 2.0 ┆ [0.8, ┆ 0.5 │
│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 0.0, ┆ │
│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 1.0] ┆ │
│ 2.0 ┆ 1.0 ┆ 0.9 ┆ 0.0 ┆ … ┆ 1 ┆ 1.0 ┆ [1.8, ┆ 0.7 │
│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 0.0, ┆ │
│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 2.0] ┆ │
└──────────┴─────────┴─────────┴─────────┴───┴───────┴─────────┴─────────┴─────────┘
Source code in src/model_diagnostics/calibration/identification.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
|
identification_function(y_obs, y_pred, *, functional='mean', level=0.5)
¶
Canonical identification function.
Identification functions act as generalised residuals. See Notes for further details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_obs
|
array-like of shape (n_obs)
|
Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1]. |
required |
y_pred
|
array-like of shape (n_obs)
|
Predicted values of the |
required |
functional
|
str
|
The functional that is induced by the identification function
|
'mean'
|
level
|
float
|
The level of the expectile of quantile. (Often called \(\alpha\).)
It must be |
0.5
|
Returns:
Name | Type | Description |
---|---|---|
V |
ndarray of shape (n_obs)
|
Values of the identification function. |
Notes
The function The function \(V(y, z)\) for observation \(y=y_{pred}\) and prediction \(z=y_{pred}\) is a strict identification function for the functional \(T\), or induces the functional \(T\) as:
for some class of distributions \(\mathcal{F}\). Implemented examples of the functional \(T\) are mean, median, expectiles and quantiles.
functional | strict identification function \(V(y, z)\) |
---|---|
mean | \(z - y\) |
median | \(\mathbf{1}\{z \ge y\} - \frac{1}{2}\) |
expectile | \(2 \mid\mathbf{1}\{z \ge y\} - \alpha\mid (z - y)\) |
quantile | \(\mathbf{1}\{z \ge y\} - \alpha\) |
For level
\(\alpha\).
References
[Gneiting2011]
-
T. Gneiting. "Making and Evaluating Point Forecasts". (2011) doi:10.1198/jasa.2011.r10138 arxiv:0912.0902
Examples:
Source code in src/model_diagnostics/calibration/identification.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
plot_bias(y_obs, y_pred, feature=None, weights=None, *, functional='mean', level=0.5, n_bins=10, bin_method='quantile', confidence_level=0.9, ax=None)
¶
Plot model bias conditional on a feature.
This plots the generalised bias (residuals), i.e. the values of the canonical identification function, versus a feature. This is a good way to assess whether a model is conditionally calibrated or not. Well calibrated models have bias terms around zero. See Notes for further details.
For numerical features, NaN are treated as Null values. Null values are always plotted as rightmost value on the x-axis and marked with a diamond instead of a dot.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_obs
|
array-like of shape (n_obs)
|
Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1]. |
required |
y_pred
|
array-like of shape (n_obs) or (n_obs, n_models)
|
Predicted values, e.g. for the conditional expectation of the response,
|
required |
feature
|
array-like of shape (n_obs) or None
|
Some feature column. |
None
|
weights
|
array-like of shape (n_obs) or None
|
Case weights. If given, the bias is calculated as weighted average of the identification function with these weights. Note that the standard errors and p-values in the output are based on the assumption that the variance of the bias is inverse proportional to the weights. See the Notes section for details. |
None
|
functional
|
str
|
The functional that is induced by the identification function
|
'mean'
|
level
|
float
|
The level of the expectile or quantile. (Often called \(\alpha\).)
It must be |
0.5
|
n_bins
|
int
|
The number of bins for numerical features and the maximal number of (most
frequent) categories shown for categorical features. Due to ties, the effective
number of bins might be smaller than |
10
|
bin_method
|
str
|
The method to use for finding bin edges (boundaries). Options are:
|
'quantile'
|
confidence_level
|
float
|
Confidence level for error bars. If 0, no error bars are plotted. Value must
fulfil |
0.9
|
ax
|
matplotlib.axes.Axes or plotly Figure
|
Axes object to draw the plot onto, otherwise uses the current Axes. |
None
|
Returns:
Name | Type | Description |
---|---|---|
ax |
Either the matplotlib axes or the plotly figure. This is configurable by
setting the |
Notes
A model
A model \(m(X)\) is conditionally calibrated iff \(E(V(m(X), Y))=0\) a.s. The
empirical version, given some data, reads \(\frac{1}{n}\sum_i V(m(x_i), y_i)\).
See [FLM2022]
.
References
FLM2022
-
T. Fissler, C. Lorentzen, and M. Mayer. "Model Comparison and Calibration Assessment". (2022) arxiv:2202.12780.
Source code in src/model_diagnostics/calibration/plots.py
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
plot_marginal(y_obs, y_pred, X, feature_name, predict_function=None, weights=None, *, n_bins=10, bin_method='uniform', n_max=1000, rng=None, ax=None, show_lines='numerical')
¶
Plot marginal observed and predicted conditional on a feature.
This plot provides a means to inspect a model per feature. The average of observed and predicted are plotted as well as a histogram of the feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_obs
|
array-like of shape (n_obs)
|
Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1]. |
required |
y_pred
|
array-like of shape (n_obs)
|
Predicted values, e.g. for the conditional expectation of the response,
|
required |
X
|
array-like of shape (n_obs, n_features)
|
The dataframe or array of features to be passed to the model predict function. |
required |
feature_name
|
str or int
|
Column name (str) or index (int) of feature in |
required |
predict_function
|
callable or None
|
A callable to get prediction, i.e. |
None
|
weights
|
array-like of shape (n_obs) or None
|
Case weights. If given, the bias is calculated as weighted average of the identification function with these weights. |
None
|
n_bins
|
int
|
The number of bins for numerical features and the maximal number of (most
frequent) categories shown for categorical features. Due to ties, the effective
number of bins might be smaller than |
10
|
bin_method
|
str
|
The method to use for finding bin edges (boundaries). Options are:
|
'uniform'
|
n_max
|
int or None
|
Used only for partial dependence computation. The number of rows to subsample from X. This speeds up computation, in particular for slow predict functions. |
1000
|
rng
|
(Generator, int or None)
|
Used only for partial dependence computation. The random number generator used
for subsampling of |
None
|
ax
|
matplotlib.axes.Axes or plotly Figure
|
Axes object to draw the plot onto, otherwise uses the current Axes. |
None
|
show_lines
|
str
|
Option for how to display mean values and partial dependence:
|
'numerical'
|
Returns:
Name | Type | Description |
---|---|---|
ax |
Either the matplotlib axes or the plotly figure. This is configurable by
setting the |
Examples:
If you wish to plot multiple features at once with subfigures, here is how to do it with matplotlib:
from math import ceil
import matplotlib.pyplot as plt
import numpy as np
from model_diagnostics.calibration import plot_marginal
# Replace by your own data and model.
n_obs = 100
y_obs = np.arange(n_obs)
X = np.ones((n_obs, 2))
X[:, 0] = np.sin(np.arange(n_obs))
X[:, 1] = y_obs ** 2
def model_predict(X):
s = 0.5 * n_obs * np.sin(X)
return s.sum(axis=1) + np.sqrt(X[:, 1])
# Now the plotting.
feature_list = [0, 1]
n_rows, n_cols = ceil(len(feature_list) / 2), 2
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, sharey=True)
for i, ax in enumerate(axs):
plot_marginal(
y_obs=y_obs,
y_pred=model_predict(X),
X=X,
feature_name=feature_list[i],
predict_function=model_predict,
ax=ax,
)
fig.tight_layout()
For plotly, use the helper function
add_marginal_subplot
:
from math import ceil
import numpy as np
from model_diagnostics import config_context
from plotly.subplots import make_subplots
from model_diagnostics.calibration import add_marginal_subplot, plot_marginal
# Replace by your own data and model.
n_obs = 100
y_obs = np.arange(n_obs)
X = np.ones((n_obs, 2))
X[:, 0] = np.sin(np.arange(n_obs))
X[:, 1] = y_obs ** 2
def model_predict(X):
s = 0.5 * n_obs * np.sin(X)
return s.sum(axis=1) + np.sqrt(X[:, 1])
# Now the plotting.
feature_list = [0, 1]
n_rows, n_cols = ceil(len(feature_list) / 2), 2
fig = make_subplots(
rows=n_rows,
cols=n_cols,
vertical_spacing=0.3 / n_rows, # equals default
# subplot_titles=feature_list, # maybe
specs=[[{"secondary_y": True}] * n_cols] * n_rows, # This is important!
)
for row in range(n_rows):
for col in range(n_cols):
i = n_cols * row + col
with config_context(plot_backend="plotly"):
subfig = plot_marginal(
y_obs=y_obs,
y_pred=model_predict(X),
X=X,
feature_name=feature_list[i],
predict_function=model_predict,
)
add_marginal_subplot(subfig, fig, row, col)
fig.show()
Source code in src/model_diagnostics/calibration/plots.py
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 |
|
plot_reliability_diagram(y_obs, y_pred, weights=None, *, functional='mean', level=0.5, n_bootstrap=None, confidence_level=0.9, diagram_type='reliability', ax=None)
¶
Plot a reliability diagram.
A reliability diagram or calibration curve assesses auto-calibration. It plots the
conditional expectation given the predictions E(y_obs|y_pred)
(y-axis) vs the
predictions y_pred
(x-axis).
The conditional expectation is estimated via isotonic regression (PAV algorithm)
of y_obs
on y_pred
.
See Notes for further details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_obs
|
array-like of shape (n_obs)
|
Observed values of the response variable. For binary classification, y_obs is expected to be in the interval [0, 1]. |
required |
y_pred
|
array-like of shape (n_obs) or (n_obs, n_models)
|
Predicted values, e.g. for the conditional expectation of the response,
|
required |
weights
|
array-like of shape (n_obs) or None
|
Case weights. |
None
|
functional
|
str
|
The functional that is induced by the identification function
|
'mean'
|
level
|
float
|
The level of the expectile or quantile. (Often called \(\alpha\).)
It must be |
0.5
|
n_bootstrap
|
int or None
|
If not |
None
|
confidence_level
|
float
|
Confidence level for bootstrap uncertainty regions. |
0.9
|
diagram_type
|
str
|
|
'reliability'
|
ax
|
matplotlib.axes.Axes or plotly Figure
|
Axes object to draw the plot onto, otherwise uses the current Axes. |
None
|
Returns:
Name | Type | Description |
---|---|---|
ax |
Either the matplotlib axes or the plotly figure. This is configurable by
setting the |
Notes
The expectation conditional on the predictions is The expectation conditional on the predictions is \(E(Y|y_{pred})\). This object is estimated by the pool-adjacent violator (PAV) algorithm, which has very desirable properties:
- It is non-parametric without any tuning parameter. Thus, the results are
easily reproducible.
- Optimal selection of bins
- Statistical consistent estimator
For details, refer to [Dimitriadis2021]
.
References
[Dimitriadis2021]
-
T. Dimitriadis, T. Gneiting, and A. I. Jordan. "Stable reliability diagrams for probabilistic classifiers". In: Proceedings of the National Academy of Sciences 118.8 (2021), e2016191118. doi:10.1073/pnas.2016191118.
Source code in src/model_diagnostics/calibration/plots.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|